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ABSTRACT – Metallized Teflon FEP (fluorinated ethylene propylene), a common
spacecraft thermal control material, from the exterior layer of the Hubble Space
Telescope (HST) has become embrittled and suffers from extensive cracking.  Teflon
samples retrieved during Hubble servicing missions and from the Long Duration
Exposure Facility (LDEF) indicate that there may be continued degradation in tensile
properties over time.  An investigation has been conducted to evaluate the effect of air
and vacuum storage on the mechanical properties of x-ray exposed FEP.  Aluminized-
FEP (Al-FEP) tensile samples were irradiated with 15.3 kV Cu x-rays and stored in
air or under vacuum for various time periods.  Tensile data indicate that samples
stored in air display larger decreases in tensile properties than for samples stored
under vacuum.  Air-stored samples developed a hazy appearance, which corresponded
to a roughening of the aluminized surface. Optical property changes were also
characterized.  These findings indicate that air exposure plays a role in the
degradation of irradiated FEP, therefore proper sample handling and storage is
necessary with materials retrieved from space.

1 – INTRODUCTION

Metallized Teflon FEP, a common thermal control material used on spacecraft, such as the Long
Duration Exposure Facility and the Hubble Space Telescope, has been found to degrade in the low
Earth orbit (LEO) space environment.  Teflon FEP is used as the outer layer of thermal control
insulation because of its excellent optical properties (low solar absorptance and high thermal
emittance).  A metallized layer is applied to the backside of the FEP to reflect incident solar energy.
The solar absorptance (αs) and thermal emittance (ε) of 127 µm (5 mil) Teflon with an aluminized
backing is typically 0.13 and 0.81, respectively.1  Solar radiation (ultraviolet radiation and x-rays from
solar flares), electron and proton radiation (omni-directional particles trapped in the Van Allen belts),
thermal exposure and thermal cycling, and atomic oxygen exposure are all possible LEO environmental
factors which could contribute to the FEP degradation.
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The LDEF spacecraft was retrieved on January 11, 1990 after 69 months in the space environment.2,3

The silvered-FEP (Ag-FEP) blankets from the trailing edge of LDEF, which received high solar
fluences and very low atomic oxygen fluences, were found to be embrittled and developed surface
cracking under tensile bending.4,5  The leading edge which received a high atomic oxygen fluence, and
similar solar fluences, was found to be eroded but remained ductile.5,6

The HST was launched on April 25, 1990 into low Earth orbit and is the first mission of NASA’s Great
Observatories program. The HST was designed to be serviced on-orbit to upgrade scientific capabilities.
The first servicing mission (SM1) occurred in December 1993, after 3.6 years in space.  The second
servicing mission (SM2) was in February 1997, after 6.8 years in space.  The third servicing mission
(SM-3A) was in December 1999, after almost 10 years in space.  Servicing missions are also planned
for mid 2001 and 2004.

Analyses of Al-FEP and Ag-FEP multilayer insulation (MLI) blankets retrieved during SM1 revealed
that the 127 µm thick FEP exterior layer was embrittled on high solar exposure surfaces.5,7  Surfaces
which received the highest solar exposures had microscopic through-thickness cracks in the FEP at
stress locations.5,7  During SM2, severe cracking of the MLI outer layer material (127 µm thick Al-FEP)
was observed on the light shield, forward shell and equipment bays of the telescope.  Astronaut
observations combined with photographic documentation of HST taken during SM2, revealed extensive
cracking of the MLI in many locations around the telescope, with solar facing surfaces being
particularly heavily damaged.8  Embrittlement of FEP on HST is believed to be caused by radiation
exposure (primarily electron and proton radiation with contributions from x-rays from solar flares and
UV radiation) combined with thermal cycling.9

As part of the continued investigation of the damage mechanism of FEP in the space environment, a
very small number of samples, due to limited available material, were tensile tested long after initial
post-retrieval tests.  These data are shown in Table 1 along with the original post-retrieval data.  The
results indicate that there might be continued degradation in the tensile properties of the space-exposed
materials over time stored on the ground.  Because of the limited amount of space-exposed material
available, ground-based tests were conducted to determine if irradiated FEP continues to degrade over
time. One possible explanation to continued degradation is the interaction of molecular oxygen with
long-lived radicals that are formed in-space due to molecular bond breaking caused by irradiation
exposure.  An investigation has therefore been conducted to evaluate the effect of air and vacuum
storage on the mechanical properties of irradiated FEP.  X-rays were used for the source of irradiation
because x-rays from solar flares are believed to contribute to the embrittlement of FEP on HST,9 and
because previous ground tests have shown that solar flare x-ray energies are energetic enough to cause
bulk embrittlement in 127 µm FEP.10  Also, the mechanism of embrittlement of FEP is believed to be
the same for all forms of ionizing radiation, therefore x-ray exposure is a very useful technique for
understanding radiation damage effects in Teflon.



NASA/TM2000-210066 3

Table 1.  Tensile Data for HST and LDEF Samples Tested At Various Post-Retrieval Times.

Source Date
127 µm FEP

Solar Exposure, AO Fluence
(ESH, atoms/cm2)

Samples
Tested

(#)

% Elongation to
Failure

Relative to Pristine

UTS
(MPa)

HST Samples (Retrieved December 1993)

Zuby et al.7 1994 Pristine 1 100 27.2
MLI SM1 (11,339, <3.0 E20) 2 45 14.7

Banks et al.10 1998 Pristine 9 100 19.2
MLI SM1 (11,339, <3.0 E20) 1 21 13.6

LDEF Samples (Retrieved January 1990)

Pippen6 <1995 LDEF Ground Control 2 100 -
LDEF D01 (7437, 2.9 E17) 2 102 9.90
LDEF F04 (10,458, 2.3 E5) 2 71 13.0

Hall & Banks11 1998 LDEF Ground Control 1 100 24.0
LDEF D01 (7437, 2.9 E17) 1 36 14.0
LDEF F04 (10,458, 2.3 E5) 1 30 12.8

2 – MATERIALS & EXPERIMENTAL PROCEDURES

2.1 Material (Pristine Al-FEP)  Teflon FEP is a perfluorinated copolymer of tetrafluoroethylene
(TFE) and hexafluoropropylene (HFP). The Al-FEP material was 5 mil (127 µm) thick FEP coated on
the backside with 1000 Å of vapor deposited Al (VDA) from Sheldahl, Inc.

2.2 X-Ray Exposure  A modified X-ray photoelectron spectroscopy (XPS) facility was used to irradiate
the FEP side of the Al-FEP tensile samples.  A copper target was irradiated with a 15.3 kV, 30 mA
electron beam producing Cu x-rays.  The tensile samples were located 30.5 mm from the target, and the
Cu x-rays were filtered through a 2 µm Al window (part of the x-ray tube).  A 25 mil (635 µm) thick
beryllium filter was placed over the FEP samples to absorb the low energy Cu L components (930 eV),
which would contribute significantly to damage of just the surface.12  The x-ray flux was 13.28 W/m2.13

The choice of target material, electron beam energy, and filter was chosen to produce a high flux,
uniform distribution of energy absorbed versus depth in the film. Figure 1 shows the energy deposition
rate, or dose rate, versus depth below the surface for 127 µm FEP film for the exposure conditions used
(Gy = Gray = 100 Rads = Joule/kg).12,14 The technique used to characterize the x-ray source and energy
deposition within the FEP film is described in detail by Pepper and Wheeler in reference 12.  Pepper et
al. provide quantitative characterization of the Cu x-ray source and the absorbed energy deposition rate
within a Teflon film in reference 13.
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Fig. 1:  Energy deposition rate in 127 µm thick FEP as a function of depth below the surface.

2.3 Air and Vacuum Storage  X-ray exposed tensile samples were stored in the following three
different environments:  fluoropolymer containers in ambient air, high vacuum, or low vacuum.  High
vacuum storage, 10-8 Torr, was in the actual facility used for x-ray exposure.  The low vacuum (60-100
mTorr) was within a vacuum desiccator.  Samples were quickly transferred from the research facility to
the desiccator to make available the x-ray facility for additional irradiation exposures.

2.4 Tensile Properties  Samples for tensile testing were ‘dog bone’ shaped and die-cut using a tensile
specimen die manufactured according to ASTM D638-95, type V.  The tensile samples were 3.18 mm
wide in the narrow section, with a 9.5 mm gauge length.  All samples were cut from the same stock
material, parallel to the roll direction.  The samples were tested at a rate of 1.27 cm/min.

2.5 Optical Properties  Solar reflectance (total (ρt), diffuse (ρd) and specular (ρs)), solar absorptance,
and room temperature emittance (εRT) were obtained on a sample (identified as sample FEPOP3)
prepared for optical property characterization. The sample’s reflectance (total and diffuse) values were
measured with a Perkin-Elmer λ-19 Spectrophotometer operated with a 150 mm integrating sphere
within the range of 250 to 2500 nm.  Data from the λ-19 was convoluted into the air mass zero solar
spectrum to obtain ρt and ρd.

15  The value for ρs is the difference between ρt and ρd.  The value for αs is
the difference between 1.0 and ρt.  Room temperature emittance was obtained using a Gier Dunkel DB-
100 infrared reflectometer, which provided an integrated reflectance value that was subtracted from 1 to
get εRT.

2.6 Surface Characterization  Optical micrographs were taken of tensile and optical samples using an
Olympus SZH Stereo-zoom microscope.  The surface topography of both the FEP and Al sides of
exposed and unexposed regions of air-stored x-ray exposed samples were examined using scanning
electron microscopy and atomic force microscopy.  Electron micrographs were taken using a JEOL
6100 scanning electron microscope (SEM) operated at an accelerating voltage of 15 kV.  A sample
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(FEPCu42AB), originally irradiated and air-stored for tensile testing, was cut in half and coated with a
thin conductive layer of Pd prior to examination.  Atomic force microscope (AFM) images were
obtained on an optical sample (FEPOP1) using a Park Scientific AutoProbe scanning probe microscope.
Areas from 5 to 74 µm square were imaged.  The images were flattened using identical techniques to
remove background curvature introduced as a scanning artifact. The average root mean square (RMS)
roughness was computed for each scan size.

3 – RESULTS & DISCUSSION

3.1 Preliminary X-Ray Tests A series of tests were conducted to find the optimal exposure conditions
and maximum number of samples, for repeatable reduction in tensile properties.  It was desired to have
an initial reduction in the percent elongation to failure of ≈50% of the pristine material, prior to storage
testing.  The UTS and percent elongation to failure for 14 pristine samples was 18.6 ± 1.3 MPa and
214.5 ± 20.8%, respectively.  It was determined that a 2-hour exposure would provide the desired
reduction in tensile properties.  The maximum number of samples that could be uniformly exposed at a
time was two.  The samples were centered in a holder that provided a 2.0 cm wide exposure area (the
tensile sample gauge length is ≈1 cm).  Figure 2 shows two tensile samples loaded in the sample holder,
along with the sample labeling.  The total energy absorbed per unit area integrated through the full
thickness (the areal dose, D) of the 127 µm foil for the 2 hour exposure was 33.8 kJ/m2.14

Fig. 2:  Tensile samples mounted in the x-ray holder (without the Be filter).

3.2 Comparison of Air-Stored and Vacuum-Stored X-Ray Exposed Samples  Table 3 lists the tensile
properties for samples irradiated with the same x-ray exposure conditions and then stored in air or
vacuum.  Uncertainties represent the standard deviation of the samples tested.  The samples stored
under vacuum up to 115.5 hours were under high vacuum until tensile testing.  Whereas, those stored
for 212 and 361 hours were initially stored under high vacuum, then transferred to low vacuum.  The
results indicate, as shown in Figures 3 and 4, that the samples stored in air have larger decreases in
tensile properties than the samples stored under vacuum. Samples stored under vacuum (for up to 400
hours) show no further decrease in tensile properties over time, while samples stored in air (for up to
900 hours) appear to show continued decreases in percent elongation to failure over time.  More data
points are needed to verify this trend.

BC

AB
0.9 cm

2.0 cm
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Table 3.  Tensile Results for X-ray Exposed FEP Stored in Air and Under Vacuum.

Air-Storage
Time in Storage

(hours)
UTS

(MPa)
Elongation at Failure

%
Samples

#
1 13.2 +/- 0.8 135.7 +/- 19.0 6
24 13.5 +/- 0.6 166.4 +/- 17.4 6
48 12.8 +/- 0.3 153.6 +/- 11.4 5
96 13.2 +/- 0.4 142.2 +/- 17.7 3
192 12.5 +/- 0.5 132.8 +/- 26.5 4
336 13 +/- 0.2 112.3 +/- 33.1 6
907 13.1 +/- 0.2 82.0 +/- 6.6 4

Vacuum-Storage
Time in Storage

(hours)
UTS

(MPa)
Elongation at Failure

%
Samples

#
15 14.7 +/- 0.5 173.3 +/- 19.8 4

17.5 14.5 +/- 0.3 181.6 +/- 7.8 2
25.5 14.3 +/- 0.6 185.1 +/- 7.5 2
66 13.8 +/- 0.8 152.0 +/- 23.5 4

88.5 14.7 +/- 0.5 190.5 +/- 8.6 2
115.5 14.2 +/- 0.5 192.0 +/- 6.1 2
212 14.5 +/- 0.5 177.4 +/- 10.7 4
361 14.3 +/- 0.2 179.7 +/- 5.4 2
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Fig. 3:  Percent elongation at failure as a function of time stored in air or under vacuum.
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Fig 4:  Ultimate tensile Strength (UTS) as a function of time stored in air or under vacuum.

The x-ray-exposed samples that were stored in air developed a hazy/white appearance in the irradiated
area over time, as shown in Figure 5.  This hazy appearance did not develop on the samples that were
stored under vacuum.

Fig 5: Development of hazy appearance in an x-ray exposed sample, after air-storage for: a). 25
minutes, b). 27 hours, and c). 118 hours.

Optical samples (2.54 cm square) were prepared and irradiated under the same x-ray exposure
conditions as the tensile samples so that changes in optical properties could be measured and
corresponded to the hazy-white appearance.  Table 4 lists solar reflectance, solar absorptance, and
thermal emittance data for an optical sample.  The changes in optical properties over time for this x-ray
exposed and air-stored sample can be seen in Figure 6.  The hazy appearance primarily increases the
diffuse reflectance, but small solar absorptance increases occur also.

aa b c

X-Ray
Exposed

Non-
Exposed

1.5 mm
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The source of the haziness was evaluated using scanning electron microscopy and atomic force
microscopy.  An irradiated tensile sample was cut in half and mounted on a SEM sample holder with
both FEP and Al sides up for SEM analysis (instead of tensile testing).  Unexposed and exposed areas
were imaged at 0° and 45° tilt angles and compared.  As can be seen in Figure 7, the unexposed FEP
and Al surfaces look very similar with a slight texture observed at 2,500X magnification.  The x-ray
exposed FEP surface looked similar to the unexposed surfaces, but the exposed Al surface appeared
rougher with the apparent development of very small surface particles.

Table 4.  Optical Properties of X-Ray Exposed Sample FEPOP3 after Various Air-Storage Times.

Air-Storage
Time

(Hours)

Total
Reflectance

(ρt)

Diffuse
Reflectance

(ρd)

Specular
Reflectance

(ρs)

Solar
Absorptance

(αs)

Thermal
Emittance

(εRT)

No Exposure 0.875 0.082 0.793 0.125 0.787
1 0.87 0.112 0.758 0.13 0.787
25 0.861 0.138 0.723 0.139 0.787
121 0.852 0.213 0.639 0.148 0.787

308.5 0.85 0.232 0.618 0.15 0.786
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Fig. 6:  Optical properties of irradiated sample FEPOP3 after various air-storage durations.
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FEP Side

Al Side

ExposedUnexposed

Fig. 7:  SEM micrographs of unexposed and exposed areas of the FEP and Al sides of a x-ray exposed
tensile sample at a 45° tilt angle.

The AFM average RMS surface roughness values for various size scan areas of a x-ray exposed, air-
stored sample are listed in Table 5.  The RMS roughness for the unexposed surfaces, and the exposed
FEP surface are all very similar, while the exposed Al surface is more than 3 times as rough.  This can
be seen in the bar chart in Figure 8, where the RMS roughness for the 10 x 10 and 25 x 25 µm scan
areas for the four different surfaces are compared.  Figure 9 shows AFM 3-D topography images of the
unexposed and x-ray exposed Al surface.

Table 5.  Surface Roughness for Exposed and Non-Exposed Regions of Irradiated Al-FEP.

RMS Roughness (Å)Scan Area
(µm x µm) FEP

Unexposed
FEP

Exposed
Al

Unexposed
Al

Exposed
5 x 5 77.3 59.1 - -

10 x 10 82.7 76.5 97 361
25 x 25 92.2 87.2 95 335
50 x 50 102 118 107 -
72 x 72 - - 103 362
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Fig. 8: RMS Roughness for 10 x 10 and 25 x 25 micron square scan areas for unexposed and
irradiated areas of both Al and FEP surfaces.

Fig. 9:  AFM 3-D topography images of the Al surface of an irradiated sample: a). unexposed area, and
b). x-ray exposed area.

The haziness was found to correspond to a roughening of the aluminized-side of the sample. The exact
nature of the surface roughening, and the development of small bumps on the aluminized surface of the
irradiated Al-FEP is not known. A tape peel test was conducted on irradiated and non-irradiated regions
of the sample used for SEM examination. Irradiation was speculated to produce outgas molecules and
contribute to the surface roughening and possibly weakening of the FEP-Al interface adhesion force.
The aluminum was found to peel away from the FEP in the irradiated region, and not in the non-
irradiated region. This distinction can be seen in Figure 10. It would be of interest to conduct x-ray
photoelectron spectroscopy (XPS) analyses to get a better understanding of the chemical changes at
these surfaces.

a. b.
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Fig. 10: Irradiated and air-stored sample after tape peel testing.  A distinct difference in the adhesion of
the Al to FEP is observed between the irradiated and non-irradiated areas.

It is not known if atomic oxygen in the space environment plays a similar role in contributing to
increased degradation of tensile properties of irradiated FEP such as molecular oxygen does in these
ground-tests.  The competing roles of erosion versus contribution to embrittlement from atomic oxygen
would be of interest to study.  Variations in atomic oxygen fluence versus irradiation exposure (for
equivalent sun hours exposure) have been shown to have an effect on FEP embrittlement in the space
environment.5 Controlled synergistic atomic oxygen and x-ray exposure tests of FEP would be
interesting to conduct with respect to tensile properties.

4 – SUMMARY & CONCLUSIONS

Based on a limited number of test data from space-exposed FEP, which showed a trend for continued
degradation over time, an investigation was conducted to evaluate the effect of air and vacuum storage
on the mechanical properties of x-ray exposed FEP.  Aluminized-FEP (127 µm thick) tensile samples
were x-ray exposed with 15.3 kV Cu x-rays for 2 hours.  X-ray exposed samples were stored in air or
under vacuum for various time periods prior to tensile testing.  Tensile results indicate that the samples
stored in air have larger decreases in tensile properties than for the samples stored under vacuum.
Samples stored under vacuum (for up to 400 hours) show no further decrease in tensile properties over
time, while samples stored in air (for up to 900 hours) appear to show a trend for continued decrease in
percent elongation to failure over time.  Irradiated samples stored in air developed a hazy appearance in
the x-ray-exposed area.  The source of the haziness was evaluated using scanning electron microscopy
and atomic force microscopy.   The haziness was found to reside at the Al/FEP interface as witnessed
by increased surface roughness of the aluminized side of the material, and dramatic decrease in the
adhesion between the Al and FEP.  Optical properties of air-stored irradiated samples show an increase
in the diffuse reflectance, which is consistent with the observed roughening, characterized by AFM.
These findings indicate that air exposure plays a role in the degradation of x-ray irradiated FEP.  These
results indicate that proper sample handling and storage is necessary with space retrieved materials.

Future studies will include testing of x-ray exposed samples stored in air and under vacuum for longer
durations than reported here, and increasing the number of data points at storage times reported.  It
appears that the majority of degradation due to air-exposure occurs relatively quickly, so a more careful

Irradiated Area

3.18 mm

Non-Irradiated Area
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analysis of degradation of air-stored samples, stored up to 50 hours, is planned. Also, based on these
results Al-FEP material recently retrieved from the HST is being analyzed over time.  Tensile samples
have been prepared and are being stored under vacuum, and in air, and will be tested over a period of a
year.  Lastly, it is not known if atomic oxygen in the space environment plays a similar role in
contributing to increased degradation of tensile properties of irradiated FEP, but the competing roles of
erosion versus increased degradation would be of interest to study in controlled experiments.
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